Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. med. biol. res ; 45(12): 1244-1247, Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-659644

ABSTRACT

The auditory brainstem response (ABR) is a test widely used to assess the integrity of the brain stem. Although it is considered to be an auditory-evoked potential that is influenced by the physical characteristics of the stimulus, such as rate, polarity and type of stimulus, it may also be influenced by the change in several parameters. The use of anesthetics may adversely influence the value of the ABR wave latency. One of the anesthetics used for e ABR assessment, especially in animal research, is the ketamine/xylazine combination. Our objective was to determine the influence of the ketamine/xylazine anesthetic on the ABR latency values in adult gerbils. The ABRs of 12 adult gerbils injected with the anesthetic were collected on three consecutive days, or a total of six collections, namely: pre-collection and A, B, C, D, and E collections. Before each collection the gerbil was injected with a dose of ketamine (100 mg/kg)/xylazine (4 mg/kg). For the capture of the ABR, 2000 click stimuli were used with rarefaction polarity and 13 stimuli per second, 80 dBnHL intensity and in-ear phones. A statistically significant difference was observed in the latency of the V wave in the ABR of gerbils in the C and D collections compared to the pre-, A and E collections, and no difference was observed between the pre-, A, B, and E collections. We conclude that the use of ketamine/xylazine increases the latency of the V wave of the ABR after several doses injected into adult gerbils; thus clinicians should consider the use of this substance in the assessment of ABR.


Subject(s)
Animals , Male , Anesthetics/pharmacology , Evoked Potentials, Auditory, Brain Stem/drug effects , Ketamine/pharmacology , Xylazine/pharmacology , Anesthetics/administration & dosage , Auditory Threshold/drug effects , Gerbillinae , Ketamine/administration & dosage , Reaction Time , Xylazine/administration & dosage
2.
Braz. j. med. biol. res ; 43(8): 777-785, Aug. 2010. tab, ilus
Article in English | LILACS | ID: lil-554965

ABSTRACT

The purpose of this study was to determine the middle latency response (MLR) characteristics (latency and amplitude) in children with (central) auditory processing disorder [(C)APD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (C)APD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (C)APD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (C)APD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 µV (mean), 0.39 (SD - standard deviation) for the (C)APD group and 1.18 µV (mean), 0.65 (SD) for the control group; C3-A2, 0.69 µV (mean), 0.31 (SD) for the (C)APD group and 1.00 µV (mean), 0.46 (SD) for the control group]. After training, the MLR C3-A1 [1.59 µV (mean), 0.82 (SD)] and C3-A2 [1.24 µV (mean), 0.73 (SD)] wave amplitudes of the (C)APD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (C)APD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (C)APD.


Subject(s)
Adolescent , Child , Female , Humans , Male , Acoustic Stimulation/methods , Language Development Disorders/rehabilitation , Reaction Time , Speech Perception , Treatment Outcome
3.
Braz. j. med. biol. res ; 43(4): 359-366, Apr. 2010. ilus, tab
Article in English | LILACS | ID: lil-543581

ABSTRACT

The objective of this study was to investigate the phenomenon of learning generalization of a specific skill of auditory temporal processing (temporal order detection) in children with dyslexia. The frequency order discrimination task was applied to children with dyslexia and its effect after training was analyzed in the same trained task and in a different task (duration order discrimination) involving the temporal order discrimination too. During study 1, one group of subjects with dyslexia (N = 12; mean age = 10.9 ± 1.4 years) was trained and compared to a group of untrained dyslexic children (N = 28; mean age = 10.4 ± 2.1 years). In study 2, the performance of a trained dyslexic group (N = 18; mean age = 10.1 ± 2.1 years) was compared at three different times: 2 months before training, at the beginning of training, and at the end of training. Training was carried out for 2 months using a computer program responsible for training frequency ordering skill. In study 1, the trained group showed significant improvement after training only for frequency ordering task compared to the untrained group (P < 0.001). In study 2, the children showed improvement in the last interval in both frequency ordering (P < 0.001) and duration ordering (P = 0.01) tasks. These results showed differences regarding the presence of learning generalization of temporal order detection, since there was generalization of learning in only one of the studies. The presence of methodological differences between the studies, as well as the relationship between trained task and evaluated tasks, are discussed.


Subject(s)
Adolescent , Child , Female , Humans , Male , Acoustic Stimulation/methods , Auditory Perception/physiology , Discrimination Learning/physiology , Dyslexia/physiopathology , Severity of Illness Index
4.
Braz. j. med. biol. res ; 42(7): 647-654, July 2009. ilus, tab
Article in English | LILACS | ID: lil-517799

ABSTRACT

Studies have shown that dyslexic children present a deficiency in the temporal processing of auditory stimuli applied in rapid succession. However, discussion continues concerning the way this deficiency can be influenced by temporal variables of auditory processing tests. Therefore, the purpose of the present study was to analyze by auditory temporal processing tests the effect of temporal variables such as interstimulus intervals, stimulus duration and type of task on dyslexic children compared to a control group. Of the 60 children evaluated, 33 were dyslexic (mean age = 10.5 years) and 27 were normal controls (mean age = 10.8 years). Auditory processing tests assess the abilities of discrimination and ordering of stimuli in relation to their duration and frequency. Results showed a significant difference in the average accuracy of control and dyslexic groups considering each variable (interstimulus intervals: 47.9 ± 5.5 vs 37.18 ± 6.0; stimulus duration: 61.4 ± 7.6 vs 50.9 ± 9.0; type of task: 59.9 ± 7.9 vs 46.5 ± 9.0) and the dyslexic group demonstrated significantly lower performance in all situations. Moreover, there was an interactive effect between the group and the duration of stimulus variables for the frequency-pattern tests, with the dyslexic group demonstrating significantly lower results for short durations (53.4 ± 8.2 vs 48.4 ± 11.1), as opposed to no difference in performance for the control group (62.2 ± 7.1 vs 60.6 ± 7.9). These results support the hypothesis that associates dyslexia with auditory temporal processing, identifying the stimulus-duration variable as the only one that unequally influenced the performance of the two groups.


Subject(s)
Child , Female , Humans , Male , Acoustic Stimulation/methods , Auditory Perceptual Disorders/etiology , Dyslexia/complications , Auditory Perceptual Disorders/diagnosis , Auditory Perceptual Disorders/physiopathology , Case-Control Studies , Dyslexia/physiopathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL